ความคงตัวและกิจกรรมการต้านแบคทีเรียของสารสกัดเปลือกมังคุดที่สกัดด้วยน้ำต่อ การต้านเชื้อ Coagulase Positive Staphylococcus aureus ที่แยกจากเนื้อสุกร

The Stability and Antibacterial Activity of Crude Water Extract from Mangosteen Hull Against Coagulase Positive Staphylococcus aureus Isolated from Pork

ผุสดี ตังวัชรินทร์

บทคัดย่อ

การศึกษานี้มีวัตถุประสงค์เพื่อทดสอบการออกฤทธิ์ของสารสกัดเปลือกมังคุดที่สกัดด้วยน้ำและกรดแกลลิค ในการต้านเชื้อ coagulase positive Staphylococcus aureus CH 1 ที่แยกได้จากซากสุกร โดยทำการวิเคราะห์หาค่า ความเข้มข้นต่ำสุดที่สามารถยับยั้งและทำลายแบคทีเรีย (minimum inhibitory concentration, MIC และ minimum bactericidal concentration, MBC ตามลำดับ) และระยะเวลาที่ใช้ในการทำลายแบคทีเรีย พบว่า สารสกัดเปลือก มังคุดที่สกัดด้วยน้ำและกรดแกลลิคมีประสิทธิภาพในการยับยั้งเชื้อ S. aureus CH 1 ได้ที่ความเข้มข้น ≥ 300.00 และ $\geq 18.75 \mu \mathrm{~g} / \mathrm{ml}$ ตามลำดับ ซึ่งสอดคล้องกับค่า MIC ของสารทั้ง 2 ชนิด ที่มีค่าเท่ากับ 300.00 และ $18.75 \mu \mathrm{~g} / \mathrm{ml}$ ตามลำดับ และค่า MBC เท่ากับ 1,200 และ $75.00 \mu \mathrm{~g} / \mathrm{ml}$ ตามลำดับ นอกจากนี้การศึกษาระยะเวลาที่ใช้ในการทำลาย ของสารสกัดเปลือกมังคุดที่สกัดด้วยน้ำที่ความเข้มข้น MBC และ $2 \operatorname{MBC}(1,200$ และ $2,400 \mu \mathrm{~g} / \mathrm{ml}$ ตามลำดับ) เป็น เวลา 24 ชั่วโมง แสดงให้เห็นว่าสารสกัดเหล่านี้ออกฤทธิ์ทำลายแบคทีเรีย (bactericidal effect) และยิ่งไปกว่านั้นสาร สกัดยังทำให้แบคทีเรียที่อยู่ในสภาวะปกติถูกเหนี่ยวนำให้เข้าสู่สภาวะเครียด โดยอัตราการทำลายแบคทีเรียขึ้นอยู่กับ ความเข้มข้นของสารสกัด และระยะเวลาสัมผัสสารสกัด จากการทดสอบความคงตัวของประสิทธิภาพการยับยั้ง แบคทีเรีย พบว่าสารสกัดเปลือกมังคุดที่สกัดด้วยน้ำมีประสิทธิภาพในการยับยั้งแบคทีเรียได้เมื่อทำการเก็บรักษาที่ อุณหภูมิ 4 องศาเซลเซียส ได้นาน ไม่น้อยกว่า 7 วัน การเก็บสารสกัดเปลือกมังคุดที่สกัดด้วยน้ำในสภาวะค่า pH 3 และ 7 เป็นเวลา 2 ชั่วโมง ไม่มีผลต่อปริมาณสารประกอบโพลีฟีนอล และประสิทธิภาพในการยับยั้งแบคทีเรียของสาร สกัด แต่ในการเก็บในสภาวะค่า pH 9 นาน 2 ชั่วโมง มีผลทำให้สารสกัดมีปริมาณสารประกอบโพลีฟีนอลและ ประสิทธิภาพในการยับยั้งแบคทีเรียลดลง $(P \leq 0.05)$

คำสำคัญ: สารสกัดจากเปลือกมังคุด กรดแกลลิค Staphylococcus aureus

Abstract

The objective of this study was to investigate the in vitro activities of crude water extract from hulls of mangosteen (Garcinia mangostana L.) and gallic acid against coagulase positive Staphylococcus aureus CH 1 , isolated from pig carcasses, by determination of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and kill-time. The result was shown that the MIC of crude water extract and gallic acid at ≥ 300.00 and $\geq 18.75 \mu \mathrm{~g} / \mathrm{ml}$, respectively, exhibited ability of inhibition of S. aureus CH 1 and their MBC of antibacterial were 1,200 and $75.00 \mu \mathrm{~g} / \mathrm{ml}$, respectively. For kill-time studies, MBC and 2MBC (1,200 and $2,400 \mu \mathrm{~g} / \mathrm{ml}$,respectively) of the crude water extract for 24 hours produced a bactericidal effect. Moreover, in case of non-stressed cells could be induced to change to stressed cells.

คณะเทคโนโลยีและการพัฒนาสุมชน มหาวิทยาลัยทักษิณ วิทยาเขตพพพทลุง จ.ปิาพะยอม จ.พัทลุง 93110

The bactericidal effect depended on concentration of crude water extract and contact time. Further studies effects of temperatures and acid or base conditions that simulate processing conditions were investigated to determine the stability of antibacterial activity of dried whole hull extraction with water under processing conditions. At $4^{\circ} \mathrm{C}$, the antibacterial activity of crude water extracts was stabilities for more than 7 days. The polyphenol compound concentration of crude extract was constant and the antibacterial activity of dried whole hull extraction with water was stability at pH 3 and 7 for 2 hours, but decreased at pH 9 for 2 hours ($P \leq 0.05$)

Keywords: crude mangosteen extract, gallic acid, Staphylococcus aureus

บทนำ

ผลิตภัณฑ์จากเนื้อสัตว์มักพบการปนเปื้อนชองเชื้อ Staphylococcus aureus ซึ่งเป็นสาเหตุสำคัญของโรค อาหารเป็นพิษ (Smith et al., 1983) ดังนั้นจึงมีความจำเป็นที่ต้องใช้สารต้านจุลินทรีย์เพื่อลดเชื้อดังกล่าวใสลงใน ผลิตภัณฑ์ ซึ่งสารสกัดที่ได้จากพืชสามารถยับยั้งการเจริญของจุลินทรีย์ดังกล่าวได้อย่างมีประสิทธิภาพเช่นเดียวกับ หรือมากกว่ายาปฏิชีวนะ (Eloff, 1998)

มังคุด (Garcinia mangostana L.) จัดเป็นพืชที่อยู่ในตระกูล Clusiaceae (Guttiferae) ที่นิยมปลูกมากใน ภาคตะวันออกและภาคใต้ของประเทศไทย ซึ่งแพทย์แผนไทยได้มีการนำสารสกัดจากเปลือกมังคุดมาใช้ในการรักษา โรคท้องร่วง โรคบิด และโรคผิวหนังติดเชื้อแบคทีเรีย เป็นต้น ทั้งนี้เนื่องจากสารประกอบโพลีฟีนอลที่เป็นองค์ประกอบ ในเปลือกมังคุดมีฤทธิ์ทางเภสัชวิทยา (Mahabusakam and Viriyachitra, 1987; Praveen et al., 1991) ทั้งนี้ มี สารประกอบโพลีฟีนอลหลักที่มักพบในสารสกัดเปลือกมังคุด คือ แทนนิน ซึ่งมีฤทธิ์ในการยับยั้งการเจริญของเชื้อ S. aureus ในระดับปานกลาง เนื่องจากโครงสร้างของสารแทนนินประกอบด้วยหมู่แกลลออิล (galloyl group) (Taguri et al., 2004) และแทนนินเป็นสารปรุงแต่งในอาหารที่ได้รับการรับรองจากสำนักงานคณะกรรมการอาหารและยา ประเทศสหรัฐอเมริกา (generally recognized as safe, GRAS) (The Office of the Federal Register, 1990) แต่ อย่างไรก็ตาม สารประกอบโพลีฟีนอลจะมีปริมาณลดลงในสภาวะที่อุณหภูมิสูงและเป็นด่าง (Patthamakanokporn et al., 2008; Krook et al., 2009)

ดังนั้นในการศึกษาครั้งนี้จึงมีวัตถุประสงค์เพื่อศึกษาฤทธิ์ต้านเชื้อ coagulase positive S. aureus ที่แยกได้ จากเนื้อสุกรของสารสกัดเปลือกมังคุดที่สกัดด้วยน้ำและกรดแกลลิค และความคงตัวของสารสกัดเปลือกมังคุดที่สกัด ด้วยน้ำในสภาวะต่างๆ

อุปกรณ์และวิธีการ

1. การเตรียมแบคทีเรีย

แบคทีเรียที่ใช้ คือ เชื้อ coagulase positive S. aureus CH 1 ที่แยกได้จากซากสุกรในโรงม่าสุกรแหล่งหนึ่ง ในภาคใต้ของประเทศไทย ตามวิธีของ BAM online (2001) และยืนยันผลจากกรมวิทยาศาสตร์การแพทย์ กระทรวง สาธารณสุข ทำการจัดเก็บ stock culture ไว้ที่อุณหภูมิ $-20^{\circ} \mathrm{C}$ เมื่อต้องการทำการทดลอง นำ stock culture มา ละลายน้ำแข็ง และเลี้ยงให้เจริญเติบโตบนอาหาร Mueller Hinton agar (MHA) (Merck, Germany) บ่มที่อุณหภูมิ $35 \pm 2^{\circ} \mathrm{C}$ เป็นเวลา $22-24$ ชั่วโมง เพื่อให้เชื้ออยู่ในสภาวะ late \log phase (non-stressed cells) ตามวิธีของ Tangwatcharin et al. (2006) เขี่ยแบคทีเรีย $2-3$ โคโลนี มาใส่ในสารละลายโซเดียมคลอไรด์ความเข้มข้น 0.85% ปรับให้มีความขุ่นเท่ากับ 0.5 McFarland (ประมาณ $10^{8} \mathrm{cfu} / \mathrm{ml}$) จากนั้นทำการเจือจางเพื่อใช้ในการศึกษาต่าง ๆ ที่ ระดับความเข้มข้นสุดท้ายในช่วง 4×10^{5} ถึง $6 \times 10^{5} \mathrm{cfu} / \mathrm{ml}$

2. ชนิดของสารต้านแบคทีเรีย

ทำการเก็บรวบรมมเปลือกมังคุดจากเกษตรกรในจังหวัดฐุมพร ในปี 2552 นำเปลือกมังคุดมาทำสารสกัด ด้วยน้ำที่ภาควิชาวิชาแพทย์แผนไทย คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ จังหวัดปทุมธานี โดยการนำ เปลือีกังคุดมาทำการอบแห้งด้วยเตาอบลมร้อนที่อุณหภูมิ $50^{\circ} \mathrm{C}$ เป็นเวลา 12 ชั่วโมง แล้วบดให้เป็นผงและเก็บทำการ บรจจุใสถูงทืบแสงแบบสูญญากาศ เก็บไว้ในที่มิดชิด จากนั้นนำผงเปลือกมังคุดหมักในเมทานอลเป็นเวลา 3 วัน และ ทำการกรอง นำสารที่กรจงได้มาระเหยแบบิดดความดันภายใต้สุญญากาศ (rotary evaporator) นำกากมาสกัดข้ำ 3 ครั้ง ด้วยเมทานอล จากนั้นำสารสกัดหยาบมาเดิมน้ำกลั่นให้ท่วม นำไปต้มจนเดือดเป็นเวลา 15 นาที จากนั้นลด อุณหภูมิให้คงที่ที่ $60^{\circ} \mathrm{C}$ นาน 30 นาที นำไปกรดงด้วยผ้าขาวบาง นำสสวนที่กรองได้มาทำให้แห้งด้วยเครื่อง Lyophiizer และบดผลึกสารสกัดหยาบให้ละเฉียด ทำการบรรุุใสขวดดทืบแสงเก็บไว้ที่คุณณหภูมิ $-20^{\circ} \mathrm{C}$

ทำการวิเคราะห์ปริมาณสารประกอบโพลีทีนออเป็นตันแทนขจงการวิเคราะห์สารกลุ่ม tannin ด้วยวิธี Folin Ciocatteau Phenol reagent methoc หรือ Gallic acid equivalent per gram ตามวิธีขขง Tsai et al. (2005) โดยนำ สารสกัดทำปฏิกิกิยยกับ Folin-Ciocalteu reagent ซึ่งประกอบด้วย phosphomolybdic-phosphotungstic acia reagents สารดังกล่าวจะถูกรีดิวขซโโดย phenolic hydroxyl groups ของ total polyphenols เกิดเป็น tungsten และ molybdenum blue ซึ่งให้ส้น้ำงิินและดุดกลืนแสงที่ความยาวคลื่นสูงสุด 765 nm บริมาณสารประกอบโพลีฟีนอล ทั้งหมดหาโดย เทียบกับปริมาณของกวดแกลลิค (gallic acid)

3. การทดสอบฤทธิต้านแบคทีเรีย

ทำการทดสอบฤทธี้า้านแบคทีเรียเบื้องต้นของสารสกัดเปลือกมังคุดที่สกัดด้วยน้ำและกรดแกลลิค ที่ะะดับ ความเข้มข้นต่าง ๆ ด้อยวิธี diffusion agar ตามวิธีของ Bauer et al. (1966) วางแผนการทดลองแบบ Completely randomized design (CRD) โดยมีความเข้มข้นของสารสกัดและกรดแกลลิค จำนวนน 5 และ 10 ระดับ ตามลำดับ ทำ การทดลอง 3 ซ้ำ รวมทั้งสิ้น 45 ตัวอย่าง การเตรียมสารสกัดเงลือกมังคุดที่สกัดด้วยน้ำและกรดแกลลิคทำละลายด้วย น้ำปลอดเซื้อ และเจือจางแบบสองเท่า (two fold serial dilution) จำนวน 5 และ 10 ระดับ ตามลำดับ แล้วหยดสาวแต่ ละซนิดลงบนแผ่น disc (กระดาษกรองเบอร์ 1, Whatman, Maidstone, UK) ขนาดเส้นผ่านศูนย์กลาง 5 มิลลิเมตร ให้ มีความเข้มข้นสุดท้ายในช่วง $0-2,400$ และ $0-2,400 \mu \mathrm{~g} / \mathrm{m} \mid$ ตามลำดับ โดยความเข้มข้น $0 \mu \mathrm{~g} / \mathrm{m} \mid$ ของสารแต่ละชนิด เป็นชุดควบุคุม (negative contro) คือน้ำปลอดเชื้อ จากนั้นใช้ไม้พันสำลีปลอดเชื้อรุ่มสารละลายแบคทีเรียที่เดรียมไไว้ มาป้ายให้ทั่วผิวหน้าวุ้นอาหาร (MHA) วาง disc ที่หยดสารสกัด กรดแกลลิค และสุดควบคุม แล้วนำไป่มที่อุ่ณหภูมิ $35 \pm 2^{\circ} \mathrm{C}$ เป็นเฉลา 18 ชั่วโมง และวัดขนาดวงใส (inhibition zone) ด้วย vernier caliper จากนั้นการบันทีกค่าเป็น มิลลิเมตร

ศึกษาวิเคราะห์หาระดับความเข้มข้นที่ต่าที่สุดที่สามารถยับยั้งหรืทำจายแบคทีเเีย (minimal inhibition concentration (MIC) หรือ minimal bactericidal concentration (MBC) ตามลำดับ) ของสารสกัดเปลือกัังคุดที่ สกัดด้วยน้ำ และกรดแกลลิค ด้วยวิธี broth microdilution method ตามวิธีของ CLSI M7-A4 (2002) ทั้งนี้วางแผน การทดลองแบบ $C R D$ โดยให้สารแศ่ละชนิดมีความเข้มข้นสุดท้ายใน microplate อยู่ใน่ว่ง $0-2,400 ~ \mu \mathrm{~g} / \mathrm{ml}$ จำนวน 10 ระดับ ด้วยการเจือจางงเช่นเดียวกับการทดสอบฤทธี์ต้านเบคทีเรียเบื้องต้น ทำการทดลองจำนวน 3 ํำ รวมทั้งสิ้น 60 ตัวอย่าง และใสเเซื้อ S . aureus เตรียมไว้ โดยเตรียมชุดควบคุมทุกตัวอย่าง $ๆ$ จะ 4 แบบ งังนี้ 1) growth contro। คือ อาหาเเลี้ยงงเชื้อ $\mathrm{MHB}+$ แบคทีเรีย 2) negative control คือ ตัวทำละลาย + อาหารเลี้ยงเธื้อ $\mathrm{MHB}+$ แบคทีเรีย 3) sterile control คือใส่เฉพาะอาหารเลี้ยงงเื้้อ และ 4) positive control คือยาปฐิซีวนะ Ciprofloxacin เช่นเดียวกับสาร สกัด ให้มีความเข้มข้น $0.5-250 \mu \mathrm{~g} / \mathrm{ml}+$ อาหารเลี้ยงงเซื้อ $\mathrm{MHB}+$ แบคทีเรีย แล้วนำ microplate ไปบ่มที่อุณหภูมิ $35 \pm 2^{\circ} \mathrm{C}$ เป็นเวลา 18 ชั่วโมง แล้วทำการวัดความมุ่นด้วยเครื่อง UVM 340 Microplate reader ที่ความยาวคลื่น 600 nm โดยความสามารถในการวัดความจุ่นต่ำสุดคือ <0.05 จากนั้นหาค่า MBC โดยนำสารละลายในหจุมของ
microplate ที่ใสมาปริมาตร 10μ เพาะเลี้ยงบนอาหารเลี้ยงเชื้อ MHA และนำไปบ่มที่อุณหภูมิ $35 \pm 2^{\circ} \mathrm{C}$ เป็นเวลา $24-48$ ชั่วโมง แล้วบันทึกค่า MBC ที่ระดับความเข้มข้นต่ำสุดที่สามารถทำลายแบคทีเรียได้ไม่น้อยกว่า 99.99% ของ จำนวนแบคทีเรียเริ่มต้น

4. การวิเคราะห์ระยะเวลาที่ใช้ในการทำลายแบคทีเรีย

ศึกษาประสิทธิภาพการลดปริมาณเชื้อ S. aureus CH 1 ของสารสกัดเปลือกมังคุดที่สกัดด้วยน้ำ จัดกลุ่มการ ทดลองแบบ 2×10 factorial arrangement in CRD โดยมีปัจจัย A คือระดับความเข้มข้นของสารสกัด 2 treatments ได้แก่ 1,200 และ $2,400 \mu \mathrm{~g} / \mathrm{ml}$ และปัจจัย B คือระยะเวลาที่แบคทีเรียสัมผัสสารสกัด 10 treatments ได้แก่ 0,15 , 30 นาที, $1,2,3,6,12,18$ และ 24 ชั่วโมง ทำการทดลองจำนวน 3 ซ้ำ รวมทั้งสิ้น 60 ตัวอย่าง จากนั้นทำการ วิเคราะห์ Population density estimate โดยตามวิธีของ Tangwatcharin et al. (2006) โดยวิเคราะห์หาปริมาณ แบคทีเรียที่เหลืออยู่ภายหลังสัมผัสสารสกัดบนอาหารเลี้ยงเชื้อ MHA เพื่อหาปริมาณ Total culturable cells และ อาหารเลี้ยงเชื้อเฉพาะ Baird-Parker ที่มีการเติม potassium tellurite ให้มีความเข้มข้นสุดท้าย $84 \mu \mathrm{~g} / \mathrm{ml}$ เพื่อหา ปริมาณ culturable cell แล้วนำไปบ่มที่อุณหภูมิ $35 \pm 2^{\circ} \mathrm{C}$ เป็นเวลา $24-48$ ชั่วโมง เพื่อวิเคราะห์การเปลี่ยนแปลง สภาวะชองเซลล์ในการศึกษาผลการตอบสนองทางสัณฐานวิทยาและกายภาพของเซลล์ S. aureus เนื่องจากสภาวะ เครียด (morphological and physiological responses of S. aureus to stress) ดัง Table 1

Table 1 Scheme of determination of sub-population density (Tangwatcharin et al., 2006)

Sub-population	Calculation criteria
Stressed cells	$=$ Total culturable cells ${ }^{\mathrm{a}}-$ culturable cells $^{\mathrm{b}}$
Non-stressed cells	= Culturable cells
${ }^{2}$ Determined by plating on MHA	
${ }^{\circ}$ Determined by plating on BP	

5. การวิเคราะห์ความคงตัวของสารสกัดในสภาวะต่าง ๆ

ศึกษษาความคงตัวของสารสกัดเปลือกมังคุดในสภาวะต่าง ๆ โดยนำสารสกัดเปลือกมังคุดที่สกัดด้วยน้ำมาทำ ละลายด้วยน้ำปลอดเซื้อ จากนั้นเก็บในสภาวะต่าง $ๆ$ ดังนี้

1) การให้ความเย็น ได้แก่ เก็บที่อุณหภูมิ $-18,4$ และ 10 องศาเซลเซียส เป็นเวลา 0,3 และ 7 วัน
2) ค่า pH ได้แก่ $\mathrm{pH} 3,7$ และ 9 ที่อุณหภูมิ 4 องศาเซลเซียส เป็นเวลา 0,1 และ 2 ชั่วโมง ทั้งนี้ทำการปรับ ค่า pH ด้วยสารละลาย 0.5 M HCl และ 0.5 N NaOH

จากนั้นทำการวิเคราะห์ปริมาณสารประกอบโพลีฟีนอลด้วยวิธี Folin Ciocalteau Phenol reagent method ตามวิธีของ Tsai et al. (2005) และทำการวิเคราะห์ความเป็นสารต้านแบคทีเรียของสารสกัดด้วยวิธี Broth microdilution method ตามวิธีของ CLSI M7-M4 (2002) เพื่อหาค่า minimal inhibitory concentration (MIC) และ minimal bactericidal concentration (MBC) ที่เปลี่ยนแปลงไป

6. การวิเคราะห์ข้อมูลทางสถิติ

วิเคราะห์ทางสถิติและเปรียบเทียบความแตกต่างระหว่างค่าเฉลี่ยความยาวของเส้นผ่านศูนย์ inhibition zone ปริมาณเซื้อ S. aureus CH 1 ที่เหลืออยู่ภายหลังสัมผัสการสกัดที่ระดับความเข้มข้นต่าง ๆ และปริมาณ สารประกอบโพลีฟีนอลของสารสกัดภายหลังการเก็บรักษาที่สภาวะต่าง ๆ โดย GLM procedure และ Duncan's New Multible Range Test ตามลำดับ ที่ระดับความเชื่อมั่นร้อยละ 95 ด้วยโปรแกรม SAS (Staitical Analysis System Institute, 1998)

ผลการศึกษาและวิจารณ์

1. การทดสอบฤทธิ์ต้านแบคทีเรีย

จากการทดสอบพบว่าสารสกัดจากเปลือกมังคุดที่สกัดด้วยน้ำ และกรดแกลลิคมีประสิทธิภาพในการยับยั้ง เชื้อ S. aureus CH 1 ที่ความเข้มข้น ≥ 300.00 และ $\geq 18.75 \mu \mathrm{~g} / \mathrm{ml}$ ตามลำดับ (Figure 1) ซึ่งสอดคล้องกับค่า MIC ของสารทั้ง 2 ชนิด ที่มีค่าเท่ากับ 300.00 และ $18.75 \mu \mathrm{~g} / \mathrm{ml}$ ตามลำดับ แต่อย่างไรก็ตาม ค่า MBC มีความเข้มข้นเป็น 4 เท่าของค่า MIC คือ 1,200 และ $75.00 \mu \mathrm{~g} / \mathrm{ml}$ ตามลำดับ (Table 2) ซึ่งสอดคล้องกับการศึกษาครั้งนี้ที่พบว่าสาร สกัดเปลือกมังคุดที่สกัดด้วยน้ำมีปริมาณสารประกอบโพลีฟีนอล $70.54 \pm 2.61 \mu \mathrm{~g}$ gallic acid equivalent $/ \mathrm{mg}$ คิด เป็น 7.05% นอกจากนี้สารแทนนินเป็นสารประกอบโพลีฟีนอลหลักที่มักพบในสารสกัดเปลือกมังคุด โดยโครงสร้าง ของสารแทนนินประกอบด้วยหมู่แกลลออิล (galloyl group) ซึ่งมีฤทธิ์ในการยับยั้งการเจิญเชื้อ S. aureus ในระดับ ปานกลาง (Taguri et al., 2004) ดังนั้นกรดแกลลิคจึงมีฤทธิ์ยับยั้งเชื้อ S. aureus CH 1 ได้ดีกว่าสารสกัดจากเปลือก มังคุดด้วยน้ำ

Figure 1 Antibacterial activity (zone of inhibition) of (A) crude water extract and (B) gallic acid against coagulase positive S. aureus CH 1 . The results are presented as means of three replications and standard deviations (bar)
${ }^{a-h}$ Different letters within each solution indicate that values are significantly different ($P \leq 0.05$)

Table 2 The MIC and MBC ($\mu \mathrm{g} / \mathrm{ml}$) of mangosteen hull extract against coagulase positive S . aureus CH 1 compared to those of gallic acid

Strain	Crude extract $(\boldsymbol{\mu g} / \mathrm{ml})$		Gallic acid $(\boldsymbol{\mu g} / \mathrm{ml})$	
	MIC	MBC	MIC	MBC
S. aureus $\mathrm{CH1}$	300.00	$1,200.00$	18.75	75.00

2. ระยะเวลาที่ใช้ในการทำลายแบคทีเรีย

จาก Figure 2 แสดงอัตราการทำลายเชื้อ S. aureus CH 1 ของสารสกัดจากเปลือกมังคุดที่สกัดด้วยน้ำที่ ความเข้มข้น MBC และ $2 \mathrm{MBC}(1,200.00$ และ $2,400.00 \mu \mathrm{~g} / \mathrm{ml}$ ตามลำดับ) พบว่าแบคทีเรียทั้งหมด และแบคทีเรีย ที่อยู่ในสภาวะปกติ (total และ non-stressed bacterial ตามลำดับ) มีปริมาณลดลงอย่างรวดเร็วภายหลังสัมผัสสาร สกัดที่ความเข้มข้นทั้ง 2 ระดับ เป็นเวลา 18 ชั่วโมง โดยความเข้มข้น $1,200.00 \mu \mathrm{~g} / \mathrm{ml}$ มีปริมาณแบคทีเรียเหลือน้อย กว่า 1 log และยังเหนี่ยวนำแบคทีเรียที่อยู่ในสภาวะปกติเข้าสู่สภาวะเครียด (stressed cells) สูงสุดเมื่อสัมผัสกับสาร สกัดที่ความเข้มข้นทั้ง 2 ระดับ เป็นเวลา 6 ชั่วโมง $(P \leq 0.05)$ แต่อย่างไรก็ตามสารสกัดที่ความเข้มข้น 2 MBC มีอัตรา

Time (min)
Figure 2 Survivors curves for (A) total culturable, (B) non-stressed and (C) stressed cells of coagulase positive S. aureus CH 1 in MHB at $35^{\circ} \mathrm{C}$ as a function of antibacterial concentration, $(--)$ $1,200.00$ and $(-) 2,400.00 \mu \mathrm{~g} / \mathrm{ml}$

การทำลายเชื้อ S . aureus CH 1 เร็วกว่าที่ความเข้มข้น $\mathrm{MBC}(P \leq 0.05)$ โดยความเข้มข้น $2,400.00 \mu \mathrm{~g} / \mathrm{ml}$ เป็นเวลา 12 ชั่วโมง มีปริมาณแบคทีเรียเหลือน้อยกว่า $1 \log$ ยิ่งไปกว่านั้น เมื่อสัมผัสสารสกัดที่ความเข้มข้นทั้ง 2 ระดับ เป็นเวลา 24 ชั่วโมง แสดงให้เห็นว่าสารสกัดเหล่านี้ออกฤทธิ์ทำลายแบคทีเรีย (bactericidal effect) ซึ่งสอดคล้องกับการศึกษา ประสิทธิภาพของสารสกัดเปลือกมังคุดความเข้มข้น 2 MBC และ 4 MBC (2.5 และ $5 \mu \mathrm{~g} / \mathrm{ml}$ ตามลำดับ) ต่อการ ทำลายเชื้อ Streptococcus mutans พบว่า การสัมผัสสารสกัดความเข้มข้น 2 MBC เป็นเวลา 90 นาที มีประสิทธิภาพ ในการยับยั้งแบคทีเรียชนิดนี้ (bacteriostatic effect) โดยสามารถทำให้แบคทีเรียทั้งหมดมีปริมาณลดลง 10 เท่า แต่ เมื่อเพิ่มขึ้นคคามเข้มข้นเป็น 4 MBC สัมผัสเป็นเวลา 60 นาที มีสารสกัดมีประสิทธิภาพในการยับยั้งแบคทีเรียโดย

สามารถทำให้แบคทีเรียทั้งหมดมีปริมาณลดจง 100 เท่า และเมื่อสัมผัสเป็นเวลา 90 นาที สารสกัดมีประสิทธิภาพใน การทำลายแบคทีเรียทั้งหมดได้ (bactericidal effect) (Torrungruang et al., 2007) ดังนั้นอัตราการทำลายแบคทีเรีย ของสารสกัดขึ้นอยู่กับความเข้มข้นของสารสกัด และระยะเวลาสัมผัสสารสกัด อย่างไรก็ตาม ควรมีการศึกษา ประยุกต์ใช้สารสกัดเปลือกมังคุดด้วยน้ำความเข้มข้น $2,400.00 \mu \mathrm{~g} / \mathrm{mi}$ ในเนื้อสัตว์และผลิตภัณฑ์เนื้อสัตว์ต่อไป

3. ความคงตัวของสารสกัดในสภาวะต่าง ๆ

จากการศึกษาความคงตัวของสารสกัดเปลือกมังคุดที่สกัดด้วยน้ำด้วยการให้ความเย็นที่อุณหภูมิ -184 และ 10 องศาเซลเซียส เป็นเวลา 0,3 และ 7 วัน ด้วยวิเคราะห์หาปริมาณสารประกอบโพลีฟีนอล พบว่า การเก็บรักษาที่ อุณหภูมิ -18 และ 4 องศาเซลเซียส สารสกัดมีปริมาณสารประกอบโพลีฟีนอลไม่แตกต่างกัน $(P>0.05)$ ตลอด ระยะเวลาการเก็บรักษา 7 วัน ในขณะที่การเก็บรักษาที่อุณหภูมิ 10 องศาเซลเซียส เป็นเวลา 7 วัน สารสกัดมีปริมาณ สารประกอบโพลีฟีนอลลดลง ($P \leq 0.05$) จาก 71.54 ± 3.12 เป็น $55.26 \pm 2.64 \mu \mathrm{~g}$ gallic acid equivalent $/ \mathrm{mg}$ เซ่นเดียวกันกับการวิเคราะห์ฤทธิ์ต้านแบคทีเรีย โดยการเก็บรักษาสารสกัดเปลือกมังคุดที่สกัดด้วยน้ำที่ -18 และ 4 องศาเซลเซียส มีค่า MIC และ MBC ตลอดระยะเวลาการเก็บรักษา 7 วัน คือ 300 และ $1,200 \mu \mathrm{~g} / \mathrm{ml}$ ตามลำดับ ในขณะที่อุณหภูมิ 10 องศาเซลเซียส กลับมีค่า MBC เพิ่มขึ้นเป็น $2,400 \mu \mathrm{~g} / \mathrm{ml}$ (Table 3) ดังนั้นจากผลการศึกษานี้ แสดงให้เห็นว่าภายหลังทำละลายสารสกัดเบลือกมังคุดที่สกัดด้วยน้ำ ควรทำการเก็บรักษาที่อุณหภูมิไม่เกิน 4 องศา เซลเซียส เนื่องจากสามารถรักษาคุณสมบัติการออกฤทธิ์ในการยับยั้งเชื้อ S. aureus ของสารสกัดทั้ง 2 ชนิด ได้นาน ถึง 7 วัน ซึ่งสอดคล้องกับการศึกษาของ Patthamakanokporn et al. (2008) รายงานว่าสารประกอบโพลีฟีนอลใน สารสกัดผลฝรั่งจะมีความคงตัวที่อุณหภูมิการเก็บรักษา -20 องศาเซลเซียส มากกว่าที่อุณหภูมิ 5 องศาเซลเซียส โดย การเก็บรักษาที่อุณหภูมิ -20 และ 5 องศาเซลเซียส สารประกอบโพลีฟีนอลจะคงตัวได้ 14 และ 7 วัน ตามลำดับ โดยมี ปริมาณกรดแกลลิคไม่แตกต่างกันกับกลุ่มควบคุม หลังจากนั้นจะเริ่มลดลง

ในขณะที่การเก็บรักษาสารสกัดเปลือกมังคุดที่สกัดด้วยน้ำที่สภาวะค่า $\mathrm{pH} 3,7$ และ 9 เป็นเวลา 01 และ 2 ชั่วโมง โดยการวิเคราะห์หาบริมาณสารประกอบโพลี๋ีนอล พบว่า การเก็บรักษาที่สภาวะค่า pH 9 เป็นเวลา 1 และ 2 ชั่วโมง สารสกัดมีปริมาณสารประกอบโพลีฟีนอลลดลง $(P \leq 0.05)$ จาก 71.22 ± 3.49 เป็น 47.57 ± 4.66 และ $24.46 \pm 5.89 \mu \mathrm{~g}$ gallic acid equivalent $/ \mathrm{mg}$ ตามลำดับ ในขณะที่การเก็บรักษาที่สภาวะค่า pH 3 และ 7 สารสกัดมี ปริมาณสารประกอบโพลีฟีนอลไม่แตกต่างกัน $(P>0.05)$ ตลอดระยะเวลาการเก็บรักษา 2 ชั่วโมง ซึ่งเป็นผล เช่นเดียวกันกับการวิเคราะห์ฤทธิ์ต้านแบคทีเรีย ที่พบว่าที่สภาวะค่า pH 9 เป็นเวลา 1 และ 2 ชั่วโมง มีผลทำให้ค่า MIC เพิ่มขึ้นจาก 300.00 เป็น 1,200 และ $2,400 \mu \mathrm{~g} / \mathrm{ml}$ ตามลำดับ และมีค่า MBC เพิ่มขึ้นจาก 1,200 เป็น 2,400 และ $4,800 \mu \mathrm{~g} / \mathrm{ml}$ ตามลำดับ แต่อย่างไรก็ตาม ที่สภาวะค่า pH 3 และ 7 ตลอดระยะเวลาการเก็บ 2 ชั่วโมง ทำให้ค่า $M I C$ และ $M B C$ ของสารสกัดไม่เปลี่ยนแปลง (Table3) ดังนั้นจากผลการศึกษานี้แสดงให้เห็นว่าภายหลังทำละลาย สารสกัดเปลือกมังคุดที่สกัดด้วยน้ำ สารสกัดไม่สามารถคงตัวที่สภาวะด่าง แต่จะคงตัวที่สภาวะกรด และกลาง ทั้งนี้ เนื่องจาก ในสภาวะด่างสารแทนนินจะไวต่อการออกซิเดชันและสูญเสียความสามารถในการเป็นสารต้านแบคที่เรีย และสารต้านการเกิดออกซิเดชัน แต่สารแทนนินจะมีความคงตัวได้ที่สภาวะกรดและกลาง (Krook et al., 2009) ซึ่ง สอดคล้องกับการศึกษาความคงตัวของสารประกอบใพลีฟีนอลในชาดำที่พบว่าสารประกอบโพลีฟีนอลจะสามารถคง ตัวในน้ำย่อยของกระเพาะอาหารที่มีค่า pH 3 และในสารละลายบัฟเฟอร์ที่มีค่า pH 5.5 แต่สารประกอบโพลีฟีนอลจะ มีปริมาณลดลงเล็กน้อยในสารละลายบัฟเฟอร์ที่มีค่า pH 7.4 และไม่คงตัวในสารละลายบัฟเฟอรีที่มีค่า pH 8.5 และ น้ำย่อยของลำไส้เล็กที่มีค่า pH 7.4-8.5 ทำให้สารประกอบโพลีฟีนอลเกิดการออโตออกชิเดซัน (Jhoo et al., 2005; Bermúdez-Soto et al., 2007)

Table 3 Stability of crude water extract from mangosteen hull at different conditions

Conditions	Contact times	Polyphenol compound' ($\mu \mathrm{g}$ gallic acid equivalent/mg)	MIC ($\mu \mathrm{g} / \mathrm{ml})$	MBC ($\mu \mathrm{g} / \mathrm{ml})$
$-18^{\circ} \mathrm{C}$	0 d	$69.98 \pm 3.0^{\text {a }}$	300.00	1,200.00
	3 d	$70.17 \pm 3.40^{\circ}$	300.00	1,200.00
	7 d	$68.74 \pm 2.91^{\text {a }}$	300.00	1,200.00
$4^{\circ} \mathrm{C}$	0 d	$71.79 \pm 4.47^{\text {a }}$	300.00	1,200.00
	3 d	$69.48 \pm 3.75^{\text {a }}$	300.00	1,200.00
	7 d	$67.97 \pm 5.61{ }^{\text {a }}$	300.00	1,200.00
$10^{\circ} \mathrm{C}$	0 d	$71.54 \pm 3.12^{\text {a }}$	300.00	1,200.00
	3 d	$68.69 \pm 3.46^{\text {a }}$	300.00	1,200.00
	7 d	$55.26 \pm 2.64{ }^{\text {b }}$	300.00	2,400.00
pH3	0 h	$69.42 \pm 3.75^{\text {a }}$	300.00	1,200.00
	1 h	$70.12 \pm 2.97^{\text {a }}$	300.00	1,200.00
	2 h	$68.81 \pm 3.14^{\text {a }}$	300.00	1,200.00
pH 7	0 h	$70.69 \pm 4.29^{\text {a }}$	300.00	1,200.00
	1 h	$69.43 \pm 3.75^{\text {a }}$	300.00	1,200.00
	2 h	$70.18 \pm 3.84^{\text {a }}$	300.00	1,200.00
pH 9	0 h	$71.22 \pm 3.49^{\text {a }}$	300.00	1,200.00
	1 h	$47.57 \pm 4.66^{\text {b }}$	600.00	2,400.00
	2 h	$24.46 \pm 5.89^{\circ}$	1,200.00	4,800.00

${ }^{1 a-c}$ Different letters within each condition indicate that values are significantly different ($P \leq 0.05$)

สรุปผลการทดลอง

สารสกัดจากเปลือกมังคุดด้วยน้ำมีถททิ์ทำลายเชื้อ S. aureus CH 1 ที่แยกได้จากเนื้อสุกร และภายหลังการ ทำละลายสารสกัด ควรทำการเก็บรักษาที่อุณหภูมิไม่เกิน 4 องศาเซลเซียส ในสภาวะที่เป็นกลางหรือกรด นอกจากนี้ ควรมีการศึกษาการประยุกต์ใช้สารสกัดจากเปลือกมังคุดด้วยน้ำในเนื้อสัตว์และผลิตภัณฑ์เนื้อสัตว์ต์อไป

กิตติกรรมประกาศ

งานวิจัยนี้ได้ร้บทุนอุดหนุนการวิจัยจากงบประมาณเงินแผ่นดิน มหาวิทยาลัยทักษิณ ประจำปีงบประมาณ พ.ศ. 2552

เอกสารอ้างอิง

Bacteriological Analytical Manual (BAM) Online. 2001. Staphylococcus aureus. U.S. Food and Drug Administration. Available at: http://www.cfsan.fda.gov/~ebam/bam-12.html. 9 Dec. 2006.
Bauer, A.W., W.M.M. Kirby, J.C. Sherris and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology. 45 (4): 493-496.
Bermúdez-Soto, M.J., F.A. Tomás-Barberán and M.T. Garcia-Conesa. 2007. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chemistry. 102 (3): 865-874.

CLSI. 2002. Reference method for dilution antimicrobial susceptibility tests for bacteria that grow aerobically Approved standard M7-A4. Clinical Laboratory Standards Institute, Wayne, Pa.
Eloff, J.N. 1998. Which extractant should be used for the screening and isolation of antimicrobial components from plants. Journal of Ethnopharmacology. 60 (1): 1-8.
Jhoo, J.W., C.Y. Lo, S. Li, S. Sang, C.Y.W. Ang, T.M. Heinze and C.T. Ho. 2005. Stability of black tea polyphenol, theaflavin, and indentification of theanaphthoquinone as its major radical reaction product. Journal of Agricultural and Food Chemistry, 53 (15): 6146-6150.
Krook, M.A., A.J. Kreinberg, A.E. Hagerman, J. Gonzalez and J.J. Halvorson. 2009. Tannin (polyphenol) stability in aqueous solutions. 2009 International Annual Meetings. 1-5 November 2009. Pittsburgh, PA.
Mahabusakam, W. and P. Viriyacitra. 1987. Chemical constituents of Garcinia mangostana. Journal of Natural Products. 50 (5): 474-478.

Patthamakanokporn, O., P. Puwastien, A. Nitithamyonga, and P.P. Sirichakwal. 2008. Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. Journal of Food Composition and Analysis. 21 (3): 241-248.
Praveen, M., N.U. Khan, B. Achari and P.K. Dutta. 1991. A triterpene from Garcinia mangostana. Phytochemistry, 30 (1): 361-362.
SAS. 1998. SAS/STAT User's Guide. Version 6.12. USA: Statistical Analysis Systems Institute Inc.
Smith, J.L., R.L. Buchanan and S.A. Palumbo. 1983. Effect of food environment on staphylococcal enterotoxin synthesis: A review. Journal of Food Protection. 46 (6): 545-555.
Tangwatcharin, P., S. Chanthachum, P. Khopaibool and M.W. Griffiths. 2006. Morphological and physiological responses of Campylobacter jejuni to stress. Journal of Food Protection. 69 (11): 2747-2753.
Taguri, T., T. Tanaka and I. Kouno. 2004. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biological and Pharmaceutical Bulletin. 27 (12): 1965-1969.
The Office of the Federal Register 1990. The Code of Federal Regulations: Alcohol, Tobacco Products and Firearms. U.S. Government Printing Office, Washington, DC.
Tsai, T-H., P-J. Tasi and S-C. Ho. 2005. Antioxidant and anti-inflammatory activities of several commonly used spices. Journal of Food Science. 70 (1): C93-C97.
Torrungruang, K., P. Vichienroj and S. Chutimaworapan. 2007. Antibacterial activity of mangosteen pericarp extract against cariogenic Stretococcus mutans. Chulalungkorn University Dental Journal. 30 (1): 1-10.

